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1 Proofs

We first formulate and prove the following auxiliary result.

Lemma 1 Suppose that φ : S → S such that |φ (s)− s| ≤ 1 for any s ∈ S is a transition

mapping, and payoff vectors {ui (s)}s∈Si∈N satisfy Strict Increasing Differences (i.e., ui (s)−uj (s)
is strictly increasing in s for i > j or, equivalently, ui (x) − ui (s) is strictly increasing in i for
x > s). Then for any 0 ≤ β < 1, {Vi (s)}s∈Si∈N , where

Vi (s) = ui (s) +
∑∞

k=1
βkui

(
φk (s)

)
, (1)

satisfy Strict Increasing Differences property, too.

Proof of Lemma 1. We prove this result by induction by the number µ (φ) of “non-

monotonicities”, i.e., the number of pairs of states (x, y) such that x < y, but φ (x) > φ (y).

Base: Suppose first that this number µ (φ) = 0, i.e., φ (s) is monotonic. Let We have

Vi (y)− Vi (x) = ui (y) +
∑∞

k=1
βkui

(
φk (y)

)
− ui (x)−

∑∞

k=1
βkui

(
φk (x)

)
= (ui (y)− ui (x)) +

∑∞

k=1
βk
(
ui

(
φk (y)

)
− ui

(
φk (x)

))
. (2)

The first term is strictly increasing in i, and the rest are weakly increasing in i, as φk (y) ≥ φk (x)
for k ≥ 1 due to monotonicity. Consequently, (2) is strictly increasing in i, and this proves the
base.

Step: Take a pair of states (x, y) such that x < y, but φ (x) > φ (y). We must have y = x+1.

Define

ũi (s) =


ui(x)+βui(y)

1+β if s = x,
ui(y)+βui(x)

1+β if s = y,
ui (s) otherwise.

(3)



Then {ũi (s)}s∈Si∈N satisfy SID as well. Indeed, take any a < b; if (a, b) 6= (x, y), then the property
holds trivially. Otherwise, suppose a < x = b < y; we then have

ũi (b)− ũi (a) =
ui (x) + βui (y)

1 + β
− ui (a)

=
ui (x)− ui (a)

1 + β
+ β

ui (y)− ui (a)
1 + β

. (4)

In (4), the first term is strictly increasing, and the second is weakly increasing (strictly if β > 0)

in i. We can consider cases a < x < y = b, a = x < y < b, and x < a = y < b similarly. Finally,

if a = x < y = b, we have

ũi (b)− ũi (a) =
ui (y) + βui (x)

1 + β
− ui (x) + βui (y)

1 + β

=
1− β
1 + β

(ui (y)− ui (x)) , (5)

which is also strictly increasing in i.

Define mapping φ̃ : S → S by

φ̃ (s) =


y if s = x,
x if s = y,

φ (s) otherwise.
(6)

Clearly, µ
(
φ̃
)
= µ (φ)− 1, and by induction

{
Ṽi (s)

}s∈S
i∈N

, given by

Ṽi (s) = ũi (s) +
∑∞

k=1
βkũi

(
φ̃
k
(s)
)
,

satisfy SID. But for any i ∈ N and s ∈ S, Ṽi (s) = Vi (s) (this trivially holds for s = x and s = y,

and one can use induction by |s− x| for s < x and by |s− y| for s > y to verify the equality).

Consequently, {Vi (s)}s∈Si∈N satisfy SID, and which completes the induction step. �

Proof of Proposition 1. We prove a stronger result, obtained by weakening one condition

in Part 3. We replace the assumption of single-peakedness with the following requirement: “For

each state s there is a player i (s) ∈ Ms such that there do not exist two states x < s and

y > s such that ui (x) > ui (s) and ui (y) > ui (s)”. This is trivially satisfied if for each player i,

preferences are single-peaked (then one can pick i (s) to be any element of Ms.

We start by proving this stronger proposition in the non-stochastic case, i.e., where L0 = S.

We do so by induction by the number of states m = |S|. The base m = 1 is trivial. We now

assume that the Proposition has been proved for all configurations with |S| less than m, and
now prove the induction step for each part of the Proposition.

Proof for the non-stochastic case. Part 1. Consider two possibilities.
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Possibility 1. Suppose first that ui (1) ≤ ui (2) for at least one i ∈ M2. We consider a new

game with the same set of players N , the same set of states S′ = [2,m], the same set of winning

coalitions on S′ and the same protocols on S′, and payoffs given by ũi (x) = ui (x) for each

x ∈ S′. For this new game, Assumption 1 holds, and by induction it has MPE σ′ with transition
mapping φ′. Let {V ′i (x)} be the continuation values in this MPE. Let us define φ : S → S by

setting φ (x) = φ′ (x) if x ∈ S′, and φ (1) = 1 if V ′i (2) ≤ ui (1) / (1− β) for some i ∈ M1 and

φ (1) = 2 otherwise. Let us construct MPE σ that implements φ.

We need to define proposing and voting strategies for each state s ∈ S. If state s ∈ S′,

we require players to make proposals at,i as they did in the game with the set of states S′. If

proposal at,i ∈ S′ is made, players vote as in σ′; while in addition, if proposal at,i = 1 is made, we
require that all players who are have ui (1) ≤ ui (2) vote against this proposal (the players who
support the proposal will therefore not make a winning coalition in state 2). Finally, in state 1,

we consider two cases. If we defined φ (1) = 1, then we can require that only proposal at,i = 1

is made, and proposal 2 (in fact, any proposal), if made, is rejected. If we defined φ (2) = 2, we

require that proposal 2 is accepted and proposal 1 is rejected (we do so by making all players

i with V ′i (2) > ui (1) / (1− β) support proposal 1); in addition, we require that all players i
with V ′i (2) > ui (1) / (1− β) propose alternative 2, while the rest propose 1. Let us verify that
strategies constructed in this way (profile σ) are MPE; to do so, notice that continuation values

on Vi (s) = V ′i (s) for all s ∈ S′.
First, suppose the current state is s ∈ S′. Then voting strategies if proposal at,i ∈ S′ is made

are best responses for each player, as continuation game yields the same payoffs. Suppose state

1 is proposed. If it is rejected, there are two possibilities: that a transition to state 3 occurs or

that the society remains in state 2; the latter is possible only if {V ′i (3) ≥ V ′i (2)} for a winning
coalition in state 2. Since V ′i (2) ≤ ui (1) / (1− β) for some i ∈M1, we must have Vi (2) ≤ Vi (1)
for this i, and thus proposal 1 will be rejected if doing so will lead to staying in 2. If, however,

rejecting proposal 1 will lead to 3, this means that V ′j (3) ≥ V ′j (2) for all j ∈ M2, and to j = i

in particular. This again means that rejecting 1 is best response for suffi ciently many players

(for all players k ≥ j). In light of this, proposing 1 only makes sense for a player who would

want to stay in 2 instead of moving to 3. However, this player would achieve the same by

proposing 2, and thus proposing 1 cannot be a profitable deviation from proposing 2, and if it is

a profitable deviation from proposing 3, then proposing 2 must have been a profitable deviation

from proposing 3 in profile σ′, which is impossible. This shows that making the same proposals

as in σ′ is best response for each player at each stage.

Now consider state 1. If φ (1) = 1, then a proposal to move to 2 may be required never to

be accepted, as V ′i (2) ≤ ui (1) / (1− β) for suffi ciently many players, and staying in 1 would
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yield continuation utility Vi (1) = ui (1) / (1− β) while moving to 2 would yield Vi (2) = V ′i (2).

Therefore, making any proposal is a best response. Suppose, finally, that φ (1) = 2. In that

case, supporting proposal 2 is a best response for a winning coalition of players in state 1; at the

same time, rejecting proposal 1 is also a best response for these players. This means that for

any individual i ∈M1, proposing 2 is a best response. We proved that profile σ is a Markovian

profile consisting of best responses, i.e., a MPE.

Possibility 2. The second possibility is that ui (1) > ui (2) for all i ∈ M2. We take a new

game with the set of states S′ = [2,m], same sets of winning coalitions and same protocols on

S′, but with payoffs given by ũi (x) = ui (x) for each x ≥ 3 and ũi (x) = (1− β)ui (2)+βui (1) if
x = 2. Again, Assumption 1 holds, so we can take MPE σ′ with transition mapping φ′; denote

the continuation values by {V ′i (x)}. We then define φ (x) = φ′ (x) for all x ≥ 3 and consider the
following cases separately.

Case 1 . First, if at least one i ∈M2 has ui (2) / (1− β) ≥ V ′i (3), then we let φ (2) = φ (1) =

1. Then MPE σ may be constructed as follows. For s ≥ 3, we can take strategies from σ′. For

s = 2, we require that proposal 3 be rejected if made (and so will proposal 2), while proposal

1 be accepted; in addition we require that players with ui (1) > ui (2) actually propose 1. For

s = 1, we can require that all proposals are rejected. As in the consideration of Possibility 1,

we can prove that σ chosen in this way is a MPE.

Case 2. Second, suppose that all players i ∈ M2 have V ′i (3) > ui (2) / (1− β). Take the
player (not necessarily in M2) for whom these two inequalities are satisfied and who is the last

to propose when the state is 2; denote this player by j. If either ui (1) / (1− β) ≥ V ′i (3) for all

i ∈M2, or this is true for at least one player in M2 and for player j, then let φ (2) = φ (1) = 1.

The corresponding σ is similar to Case 1, except that if the current state is 2, we have to consider

the two situations separately. If ui (1) / (1− β) ≥ V ′i (3) for all i ∈ M2, then we require that

proposals 2 and 3 are never accepted, while proposal 1 is accepted, and actually made by any

player with ui (2) / (1− β) ≥ V ′i (3). If ui (1) / (1− β) ≥ V ′i (3) for at least one player in M2

and for player j, then we require that j propose 1 and it is accepted, but if j proposed 3, it

would also be accepted; in addition, any proposal made by any other player is not accepted. It

is straightforward to prove that σ constructed in such a way is a MPE that implements φ.

Case 3. The remaining case is where all players i ∈ M2 have V ′i (3) > ui (2) / (1− β), but
ui (1) / (1− β) < V ′i (3) for at least one i ∈ M2 and, moreover, either this holds for all players

in M2 or for player j. We let φ (2) = 3. Now, let φ (1) = 2 if (1− β)ui (2) + βV ′i (3) > ui (1) for

all i ∈M1, and φ (1) = 1 otherwise. We then construct σ in the following way. First, we notice

that in this case, we must have φ′ (3) ≥ 3 (and thus φ (3) ≥ 3): indeed, φ′ (3) = 2 is impossible,
since V ′i (3) > ũi (2) / (1− β) for at least one i ∈M2, and thus, by Assumption 1, this inequality
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must hold for at least one i ∈M3. This implies that for s ≥ 3, Vi (s) = V ′i (s) for all i.

So, for states s ≥ 3, we take strategies from σ′; in that case, state 2 will not be accepted

if proposed. For state 2, we consider two cases. If ui (1) / (1− β) < V ′i (3) for all i ∈ M2,

then we require that proposals 1 and 2 never be accepted, while proposal 3 be accepted and,

moreover, any player with V ′i (3) > ui (2) / (1− β) proposes 3. If ui (1) / (1− β) < V ′i (3) for

player j defined above, we require that he proposes state 3 when it is his turn, and players

accept; though, if he made proposal 1, it may also be accepted. Any earlier proposal is rejected.

Again, it is straightforward to check that we can finish the construction of σ such that σ is MPE,

and, moreover, it implements φ.

This completes the proof of existence in the non-stochastic case.

Part 2. Generically, ui (x) 6= ui (y) for any x, y ∈ S and i ∈ N . Suppose, to obtain a

contradiction, that mapping φ supported by MPE σ is nonmonotonic. Then there are x, y ∈ S
such x < y and φ (x) > φ (y). Since transitions are one-step, we have y = x+ 1.

Let us prove that ui (y) > ui (x) for all i ∈ Mx. For every i ∈ S, Vi (x) = ui (x) + βVi (y)

and Vi (y) = ui (y) + βVi (x), which implies Vi (x)− Vi (y) = (1 + β) (ui (x)− ui (y)).
Let us prove that Vi (y) ≥ Vi (x) for all i ∈ Mx. Suppose not; then consider the last voting

in the protocol πx for which proposal z ∈ {x− 1, x, y} such that Vj (z) < Vj (x) for some

j ∈ Mx is accepted. By construction, if z is rejected at this stage, then alternative s, which

has Vj (s) > Vj (z), will be implemented, which means that j is better off rejecting z. But by

Lemma 1, {Vi (s)}s∈Si∈N satisfies strict increasing differences, which means that then a winning

coalition is not better off accepting z. This contradicts that z is accepted at this stage.

We thus proved that Vi (x) ≥ Vi (y). Given genericity, ui (y) > ui (x) for all i ∈Mx. We can

similarly prove that ui (x) > ui (y) for all i ∈My. But by Assumptions 1 and 3, the same must

hold for every i ∈ Mx, which contradicts the opposite inequality established in the previous

paragraph. This contradiction completes the proof.

Part 3. Suppose that there are two MPEs σ1 and σ2 and two different transition mappings

φ1 and φ2 corresponding to these MPEs, respectively. Without loss of generality, assume that

m is the minimal number of states for which this is possible, i.e., if |S| < m, then transition

mapping is unique. Obviously, m ≥ 2.
Let us first prove that if φ1 (x) = x, then x = 1 or x = m. Indeed, suppose the opposite, and

consider φ2 (x). If φ2 (x) < x, then φ1|[1,x] and φ2|[1,x] are two different mappings, both of which
may, as it is easy to show, be transition mappings for MPE in the game with the same players

but with the set of states S′ = [1, x]. This would contradict the assertion that m is the minimal

number of players for which this is possible. If φ2 (x) > x, we get a similar contradiction by

considering the subset of states [x,m], and if φ2 (x) = x, we get a contradiction by considering
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[1, x] or [x,m] depending on where φ1 and φ2 differ. We similarly prove that if φ2 (x) = x, then

either x = 1 or x = m.

We now consider the two cases of the Proposition separately.

(a) Generically, no player gets the same utilities in two different states, and both mappings

are monotone. If φ1 (x) < x < φ2 (x) or vice versa, then for all i ∈ Mx, there must be both a

state x1 < x and a state x2 > x such that ui (x1) > ui (x) and ui (x2) > ui (x), which contradicts

the assumption in this case. Since for 1 < x < m, φ (x) 6= x, we get that φ1 (x) = φ2 (x) for such

x. Let us prove that φ1 (1) = φ2 (1). If this is not the case, then φ1 (1) = 1 and φ2 (1) = 2 (or vice

versa). If m = 2, then monotonicity implies φ2 (2) = 2, and if m > 2, then, as proved earlier, we

have φ2 (x) = x+ 1 for 1 < x < m and φ2 (m) = m. In both cases, we have φ1 (x) = φ2 (x) > 1

for 1 < x ≤ m. Hence, V 1i (2) = V 2i (2) for all i ∈ N (where V 1 and V 2 are continuation payoffs

under φ1 and φ2, respectively). Since σ1 is MPE, we must have ui (1) / (1− β) ≥ V 1i (2) for

i ∈ M1, and since σ2 is MPE, we must have ui (1) / (1− β) ≤ V 2i (2). Generically, this cannot

hold, and this proves that φ1 (1) = φ2 (1). We can similarly prove that φ1 (m) = φ2 (m), which

implies that φ1 = φ2. This contradicts the hypothesis of non-uniqueness.

(b) In this case, let Mx denote the unique quasi-median voter in state x ∈ S, and let b (x) be
the state that maximizes uMx (y) on S (generically, it is unique). By Assumption 1 the sequence

{b (x)}mx=1 is nondecreasing. Let us prove that b (2) ≥ 2. Indeed, if b (2) = 1, then b (1) = 1 by
monotonicity, and hence we must have φ1 (1) = φ2 (1) = 1, and therefore φ1 (2) = φ2 (2) = 1.

Now consider a game with the same set of players, set of states S′ = [2,m], same sets of winning

coalitions, and payoffs given by ũi (x) = ui (x) for x > 2, ũi (2) = (1− β)ui (2) + βui (1).

Now, notice that perpetual state 2 in the new game delivers exactly the continuation utility

V 1i (2) = V 2i (2) of the original game. It is now easy to see that the two mappings φ̃1 and φ̃2
given by φ̃j (x) = φj (x) if x > 2, φ̃j (2) = 2, may be supported by MPE in the new game.

But these are different mappings, which contradicts that m is the minimal number of players

for which this is possible. Hence, b (2) ≥ 2. We can similarly prove that b (m− 1) ≤ m − 1.
Since {b (x)}m−1x=2 is nondecreasing, b (x) = x for some x ∈ [2,m− 1]. But this would imply that
φ1 (x) = x, which we earlier proved to be impossible. This contradiction completes the proof in

the nonstochastic case.

Proof for the stochastic case. Part 1. The proof proceeds by induction by the number

of state which are in S but not in L. The base was proved earlier. for the step, we introduce some

extra notation. For any set of available states L, let L− = L∪{minL− 1}, L+ = L∪{maxL+ 1}.
Let us denote the transition mapping if the set of available states is L by φL, and let us denote

the continuation utilities if the current set of available states is L, and a decision to transit to (or

stay in) state s has just been made by
{
V L
i (s)

}s∈S
i∈N . For consistency in formulas, let us denote
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V L
i (s) = 0 if L is not a subset of S (i.e., contains either 0 or m+ 1) for all s ∈ [0,m+ 1]; these
will always be multiplied by 0 below.

Step. Suppose that we have proved the existence of MPE in pure strategies with a monotonic

transition mapping for all proper supersets of L (which are subsets of S), and obtained contin-

uation utilities. Let us now prove the same if the set of available states is L. We can write the

continuation utility in the following way:

V L
i (s) = ui (s)

+β

(
plL (1− prL)V L−

i

(
φL

+
(s)
)
+
(
1− plL

)
prLV

L+

i

(
φL

+
(s)
)
+ plLp

r
LV
(L−)

+

i

(
φ(L

−)
+

(s)
))

+β
(
1− plL

)
(1− prL)V L

i

(
φL (s)

)
.

Now, if we denote

ũi (s) = ui (s) + β

(
plL (1− prL)V L−

i

(
φL

+
(s)
)
+
(
1− plL

)
prLV

L+

i

(
φL

+
(s)
)
+ plLp

r
LV
(L−)

+

i

(
φ(L

−)
+

(s)
))

,

β̃ = β
(
1− plL

)
(1− prL) ,

then we can write the continuation utility as

V L
i (s) = ũi (s) + β̃V

L
i

(
φL (s)

)
.

Let σL be a MPE in pure strategies with monotonic transition map for a game without

shocks, with utilities given by {ũi (s)}s∈Si∈N and discount factor β̃ (its existence has been proved)

The existence of such equilibrium has already been proved, as {ũi (s)}s∈Si∈N satisfy the strict

increasing differences condition, as may be easily shown. It is evident that the strategies taken

from σL before any shock happens, combined with strategies found on the earlier stages of

the induction played after a shock occurs, will constitute a MPE of the game. This MPE will

be in pure strategies and with monotonic transition map. This proves the induction step and

completes the proof of Part 1.

Part 2. This follows directly from Part 2 above (mapping φ̃ is constucted as a transition

mapping of some game without shocks).

Part 3. It suffi ces to prove that respective conditions hold in a game with the set of states

L, utilities given by ũi (s) and discount factor β̃. In case (b), it follows from the hypothesis for

the game with set of states S. In case (a), take any state s, player i (s) for whom the condition

holds for utilities ui (s), and without loss of generality suppose ui (s) ≥ ui (x) for all x > s. If so,

in the game with the set of states L′, φ′ (s) > s holds only if V ′i (s) = ui (s) / (1− β), in which
case V ′i (x) ≤ V ′i (s), as the trajectory may take x only to states to the right of s. If φ

′ (s) ≤ s,
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then V ′i (s) ≥ ui (s) / (1− β) (this holds for all i ∈ Ms, including i (s)). The trajectory starting

from x > s will either involve states that yield at most ui (s) per period, or will lead to state s,

thus delivering a continuation value of V ′i (s). This implies that V
′
i (x) ≤ V ′i (s) for all x in this

case as well. But this implies that ũi (s) ≥ ũi (x) for all x > s. This proves that the property in

case (a) is satisfied, and Part 3 of the Proposition in the non-stochastic case is applicable. �

1.1 Examples

Here, we show how our model may be used to illustrate some patterns in social evolution.

Example 1 (Early shocks may make reforms more diffi cult) Suppose that S =

{s1, s2, s3} and we start with the set of feasible states, L0 = {s1, s2}. Suppose also that s2
corresponds to limited democracy and a change to this state will shift political power away from

player 1. Let player 2 to be the quasi-median voter in s2, i.e., M2 = {2}. Finally, suppose that
u2 (s3) > u2 (s2) and u1 (s3) < u1 (s2), so that player 2 would prefer transition towards a more

democratic state s3 if such transition were feasible, but this transition is disliked by player 1.

For instance, we can think of player 1 as corresponding to the king or to the aristocracy and

being in favor of limited democracy, but disliking full democracy (see Acemoglu, Egorov and

Simon 2010a, for a more detailed discussion of this example). Suppose that β is suffi ciently

high so that when L = {s1, s2, s3}, player 1 prefers to maintain s1 (since a change to s2 will
immediately induce a change to s3, which he dislikes).

Yet when we start with L0 = {s1, s2} and the probability that the set of feasible states
will expand to L = {s1, s2, s3} , p, is less than 1, the situation is potentially different. For p
suffi ciently low, player 1 would be in favor of a switch to s2, since she would expect that a

society will spend a long time in this state. Now suppose that there is an early shock, meaning

that s3 becomes available at time t = 0. This early shock make the entire reform process more

diffi cult and discourages player 1 from accepting the change to s2. In terms of the discussion

of democracy in the British context in the Introduction, an early shock would correspond to

the elite believing in 1832 that there will be very rapid reform towards much more inclusive

franchise immediately. If many members of the elite supported the reforms of 1832 with the

understanding that these would be relatively stable, such a shock may have made them less

willing to accept the more modest reforms of 1832 in the first place.

Example 2 (Patience may make matters worse) Consider the same environment as in the

previous example, but with L0 = {s1, s2, s3}, so that there is no room for new states becoming
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available. When β is close to 1, player 1 does not wish to accept the eventual switch to s3, and

thus state s1 will persist. But if β is suffi ciently small, then the transitory gain from the change

to s2 is suffi cient to compensate player 1 for the lower utility from s3. In this example, when

players are more forward-looking and more patient, the reform becomes more diffi cult.

This example also illustrates that the process of social evolution implied by our model

need not be Pareto effi cient. When the discount factor β is close to 1, the unique equilibrium

involves the society remaining in state s1 even though all agents are strictly better off in state s2.

The reason why such Pareto improving change does not take place is that once this transition

is implemented, political power shifts away from player 1 to player 2, who will then have an

incentive to implement a further change to state s3, which is disliked by player 1. Thus, it is

the inability of player 2 to commit to not implementing deferred or changed that leads to the

Pareto effi cient outcome.

Example 3 (Shocks may make reform easier) We now illustrate how, in contrast to Ex-

ample 1, shocks may also make reform easier. Suppose that S = {s1, s2, s3, s4} and we start with
the set of feasible states, L0 = {s1, s2, s3}. Suppose also thatM2 = {2} andM3 =M4 = {3}. Fi-
nally, suppose that u2 (s3) > u2 (s2) > u2 (s1) > u2 (s4) and u1 (s4) < u1 (s3) < u1 (s1) < u1 (s2),

and u3 (s4) > u3 (s3) > u3 (s2) > u3 (s1). One interpretation is that s4 is an extreme anti-

aristocratic regime, for example corresponding to communism or some form of radical populism.

This is disliked both by player 1 and player 2. Initially, state s4 is not feasible. Suppose that

it becomes feasible with some small probability p at each date (regardless of the current state).

If p is suffi ciently small, player 2 will opt to move from state s2 to state s3 (reasoning that

s4 is unlikely to become feasible and thus s3 is likely to persist). But since s3 is disliked by

player 1, this means that player 1 prefers to stay with s1. However, when state s4 becomes

available, player 2 will no longer choose to transition from s2 to s3. Given this, player 1 would

be happy to transition to s2. In this case, the shock that made state s4 available, for example,

the organization of a strong socialist or populist party, will make the initial step of reform more

likely.

Example 4 (The order of shocks matters for the reform process) Suppose again that

S = {s1, s2, s3, s4}, but we now start with the set of feasible states, L0 = {s2, s3}, and current
state s2 with M2 = {2}. We can interpret this as the society starting with a weak monarchy,
dominated by the aristocracy, and the only feasible transition is to constitutional monarchy; a

transition to either absolutist monarchy or full democracy are not feasible at first. We again
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have M3 = M4 = {3}. The payoffs are u2 (s1) > u2 (s3) > u2 (s2) > u2 (s4) and u1 (s1) >

u1 (s2) > u1 (s3) > u1 (s4) and u3 (s4) > u3 (s3) > u3 (s2) > u3 (s1). Both s1 and s4 become

available with probability p at each date. Now for p suffi ciently small and β suffi ciently small,

if neither s1 nor s4 is available at the first date, player 2 will transition to s3. If s1 becomes

available at the first date, then player 2 will transition to s1 immediately. If s4 becomes available

at the first date, then player 2 will not want to transition to s3, and will wait for s1 to become

available. Thus the exact timing of different types of shocks will determine both the timing of

transitions and the ultimate limiting state.
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